Kontakt:
Prof. Dr. Kornelius Nielsch
Universität Hamburg
Institut für Angewandte Physik
t. 040.42838-6521
e. kornelius.nielsch-at-physik.uni-hamburg.de
Kontakt:
Prof. Dr. Kornelius Nielsch
Universität Hamburg
Institut für Angewandte Physik
t. 040.42838-6521
e. kornelius.nielsch-at-physik.uni-hamburg.de
Spätestens seit der Entdeckung des Graphens – einer Modifikation von Kohlenstoff (Graphit) – als bisher dünnstem Material der Welt, sind Oberflächeneigenschaften in den Fokus der Materialforscherinnen und -forscher gerückt. Die Arbeit an topologischen Isolatoren ist momentan weltweit der am schnellsten wachsende Forschungsbereich in der Festkörperphysik und Materialforschung. „Topologisch“ bezeichnet dabei das Hervortreten einer besonderen physikalischen Eigenschaft ausschließlich an der Oberfläche, z.B. metallische Leitfähigkeit.
Anders als z.B. bei Kupferdraht, durch dessen gesamten Querschnitt Strom fließt, leitet ein topologischer Isolator die Elektronen nur in einer hauchdünnen Schicht an der Oberfläche. Dadurch kann Strom wesentlich verlustfreier fließen. Das Besondere an dem Material ist außerdem die extreme Stabilität seiner Oberfläche. Topologische Isolatoreffekte wurden bisher an sogenannten Chalcogenid-Verbindungen nachgewiesen. Das sind chemische Verbindungen, in denen sich der elektrische Widerstand verändern lässt und die als Halbleitermaterialien z.B. in der Photovoltaik zum Einsatz kommen.
Von der Untersuchung der topologischen Isolatoren verspricht sich die Forschung Erkenntnisse, deren Anwendung z.B. die Informationsverarbeitung bei der Computertechnologie revolutionieren könnte. Das Projekt von Dr. Jens Wiebe aus dem Arbeitskreis von Prof. Dr. Roland Wiesendanger untersucht mit Hilfe der Spin-aufgelösten Rastertunnelmikroskopie, welchen Einfluss magnetische Atome auf die Transporteigenschaften von topologischen Isolatoren haben. Mit dieser Mikroskopie-Methode können Strukturen im Bereich einzelner Atome sichtbar gemacht werden.
Ziel ist es, die Physik der Oberflächenzustände in topologischen Isolatoren besser zu verstehen. Das Projekt findet in enger Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Philip Hoffmann an der Universität in Aarhus in Dänemark statt.
Im zweiten Projekt versucht Prof. Kornelius Nielsch, mit einem speziellen Beschichtungsverfahren, der sogenannten epitaktischen Atomlagen-Abscheidung, die elektronischen Strukturen von topologischen Isolatoren maßzuschneidern, so dass der Transport von Strom ausschließlich an der Oberfläche stattfindet. Die Vorstufen dafür werden von Prof. Dr. Stephan Schulz an der Universität Duisburg/Essen entwickelt. Ziel ist es, topologische Isolatoren mit speziell angepassten Eigenschaften in elektronische Bauelemente integrieren zu können.
Besonderes Kennzeichen eines DFG-Schwerpunktprogramms ist die überregionale Kooperation der teilnehmenden Wissenschaftlerinnen und Wissenschaftler. Prof. Nielsch hat das neue Schwerpunktprogramm zusammen mit Kollegen an der Humboldt Universität Berlin, dem Forschungszentrum Jülich, der Universität Würzburg, dem Max-Planck-Institut für Chemische Physik Fester Stoffe in Dresden und dem Helmholtz-Zentrum Berlin für Materialien und Energie eingeworben (Koordination: Prof. Dr. Oliver Rader). Aus 81 eingereichten Anträgen wurden 34 Projekte zur Förderung durch eine internationale Jury empfohlen. Als Laufzeit sind insgesamt sechs Jahre vorgesehen. Die Förderung in der ersten Förderperiode von Sommer 2013 bis Sommer 2016 beträgt 6,3 Millionen Euro.